Anderson HW. Yeast-like fungi of the human instestinal tract. J. Infect. Dis. 21: 341-385, 1917.
Lodder J, de Vries NF. Some notes on Torulopsis glabrata (Anderson) nov. comb. Mycopathol. Mycol. Appl. 1: 98-103, 1938.
Sato M, et al. Growth inhibitory properties of chalcones to Candida. Lett Appl Microbiol 18: 53-55, 1994.
. . Curr. Genet. 1: 209-217, 1980.
Maiwald M, et al. Rapid presumptive identification of medically relevant yeasts to the species level by polymerase chain reaction and restriction enzyme analysis. J. Med. Vet. Mycol. 32: 115-122, 1994. PubMed: 8064542
Espinel-Ingroff A, et al. Comparison of RapID yeast plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J. Clin. Microbiol. 36: 883-886, 1998. PubMed: 9542903
Nakayama H, et al. Depletion of the squalene synthase (ERG9) gene does not impair growth of Candida glabrata in mice. Antimicrob. Agents Chemother. 44: 2411-2418, 2000. PubMed: 10952588
Abbreviated Identification of Bacteria and Yeast; Approved Guideline. Wayne, PA. Clinical and Laboratory Standards Institute; CLSI M35-A2.
Dujon B, et al. Genome evolution in yeasts. Nature 430: 35-44, 2004.
Koszul R, et al. The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett. 534: 39-48, 2003. PubMed: 12527359
Wang H, et al. A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9: 195, 2009. PubMed: 19664262
RapID™ Yeast PLUS QC Set. Remel™.
Clark-Walker GD, et al. Mapping of mitochondrial DNA from Torulopsis glabrata. Curr. Genet. 1: 209-217, 1980. PubMed: 24189661
Nevitt T, Thiele DJ. Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 7: e1001322, 2011. PubMed: 21445236
Cornet M, et al. Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. J Mol Diagn 13: 12-22, 2011. PubMed: 21227390
Miyakawa Y, Hara T, Iimura Y. Establishment of a screening system for essential genes from the pathogenic yeast Candida glabrata: identification of a putative TEM1 homologue. Lett. Appl. Microbiol. 49: 317-323, 2009. PubMed: 19552769
Gregori C, et al. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast. Eukaryot Cell 6: 1635-1645, 2007. PubMed: 17616630
Nakayama H, et al. The Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum. J. Antimicrob. Chemother. 60: 1264-1272, 2007. PubMed: 17913716
Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 3: 417-432, 2003. PubMed: 12748053
Wong S, Butler G, Wolfe KH. Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc. Natl Acad. Sci. USA 99: 9272-9277, 2002. PubMed: 12093907
Hanic-Joyce PJ, Joyce PB. Characterization of a gene encoding tRNA nucleotidyltransferase from Candida glabrata. Yeast 19: 1399-1411, 2002. PubMed: 12478587
Walsh DW, Wolfe KH, Butler G. Genomic differences between Candida glabrata and Saccharomyces cerevisiae around the MRPL28 and GCN3 loci. Yeast 19: 991-994, 2002. PubMed: 12125055
|