Tamakawa H, Ikushima S, Yoshida S. Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 115: 532-539, 2013. PubMed: 23294574
Tamakawa H, et al. Metabolomic and transcriptomic analysis for rate-limiting metabolic steps in xylose utilization by recombinant Candida utilis. Biosci Biotechnol Biochem 77: 1441-1448, 2013. PubMed: 23832335
Tomita Y, et al. Genome and transcriptome analysis of the food-yeast Candida utilis. PLoS One 7: e37226, 2012. PubMed: 22629373
Suzuki T, et al. Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng 112: 107-113, 2011. PubMed: 21601516
Ostermann K, et al. Identification of the genes GPD1 and GPD2 of Pichia jadinii. DNA Seq 17: 452-457, 2006. PubMed: 17381046
Park YC, et al. Molecular cloning and characterization of the alcohol dehydrogenase ADH1 gene of Candida utilis ATCC 9950. J Ind Microbiol Biotechnol 33: 1032-1036, 2006. PubMed: 16855819
Miura Y, et al. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64: 1226-1229, 1998. PubMed: 9546156
Kondo K, et al. A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J. Bacteriol. 177: 7171-7177, 1995. PubMed: 8522525
Peterson GR. Reproducible analyses of microbial food for advanced life support systems. Enzyme Microb. Technol. 10: 586-592, 1988.
Armstrong DW, et al. Production of ethyl acetate from dilute ethanol solutions by Candida utilis. Biotechnol. Bioeng. 26: 1038-1041, 1984.
Armstrong DW, et al. Production of acetaldehyde from ethanol by Candida utilis. Biotechnol. Lett. 6: 183-188, 1984.
Lawford HG, et al. Hyperaccumulation of zinc-depleted Candida utilis grown in chemostat culture. Can. J. Microbiol. 26: 71-76, 1980. PubMed: 7190863
Mudgett RE, et al. Single cell protein recovery from alfalfa process wastes. Trans. ASAE 23: 1590-1594, 1980.
Shapiro SK, Schlenk F. Conversion of 5'-methylthioadenosine into S-adenosylmethionine by yeast cells. Biochim. Biophys. Acta 633: 176-180, 1980. PubMed: 7193054
Lawford GR, et al. Production of high-quality edible protein from Candida yeast grown in continuous culture. Biotechnol. Bioeng. 21: 1163-1174, 1979.
Phillipchuk GE, Jackson H. Rapeseed oil meal as a nitrogenous substrate for microbial fermentation. J. Gen. Appl. Microbiol. 25: 117-125, 1979.
Stevenson KE, et al. Aerobic fermentations of pickle process brine by Candida utilis. J. Food Sci. 44: 181-185, 1979.
Schlenk F, et al. Biosynthesis of adenosyl-D-methionine and adenosyl-2-methylmethionine by Candida utilis. Arch. Biochem. Biophys. 187: 191-196, 1978. PubMed: 566086
Moreton RS. Growth of Candida utilis on enzymatically hydrolyzed potato waste. J. Appl. Bacteriol. 44: 373-382, 1978.
Riviere J, et al. Production de proteines microbiennes a partir de mouture de ble. Ann. Technol. Agric. 27: 585-607, 1978.
Irgens RL, Clarke JD. Production of single-cell protein by the cultivation of yeast in anaerobic digester supernatant supplemented with carbohydrates. Eur. J. Appl. Microbiol. 2: 231-241, 1976.
Holcomb ER, Shapiro SK. Assay and regulation of S-adenosylmethionine synthetase in Saccharomyces cerevisiae and Candida utilis. J. Bacteriol. 121: 267-271, 1975. PubMed: 1090572
Brewer D, et al. The antibiotic activity of cultures from fungal spores collected by a spore trap on permanent pasture. Can. J. Microbiol. 20: 721-729, 1974. PubMed: 4857622
Nakamura KD, Schlenk F. Examination of isolated yeast cell vacuoles for active transport. J. Bacteriol. 118: 314-316, 1974. PubMed: 4362463
Hang YD, et al. Sauerkraut waste: a favorable medium for cultivating yeasts. Appl. Microbiol. 24: 1007-1008, 1972.
. . Trans. ASAE 14: 103-122, 1972.
Ohta S, et al. Characterization of a heat-shock process for reduction of the nucleic acid content of Candida utilis. Appl. Microbiol. 22: 415-421, 1971. PubMed: 4330316
Maul SB, et al. New process for reducing the nucleic acid content of yeast. Nature 228: 181, 1970. PubMed: 5460024
Reiser CO. Torula yeast from potato starch wastes. J. Agric. Food Chem. 2: 70-74, 1954.
VITEK 2 YST Comprehensive QC Set. bioMerieux.
|