国产精品国产精品一区精品国产自在现偷99精品国产在热2019国产拍偷精品网国产精品视频全国免费观看,国产精品v欧美精品v日韩精品青青精品视频国产久久国产精品久久精品国产亚洲精品国产精品国产欧美精品一区二区三区,国产精品第一页国产亚洲精品国产福利国产精品自拍国产精品视频在线观看亚洲国产精品一区二区久久国产精品国产三级国产专不,国产精品视频大陆精大陆国产国语精品2019精品国产品对白在线285年香蕉精品国产高清自在自线隔壁老王国产在线精品在线观看精品国产福利片,国产三级精品三级在专区精品国产自在现偷国产精品一区二区三区国产日韩精品欧美一区喷水亚洲精品国产精品国自产国产在线精品一区二区不卡

熱門(mén)搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車(chē) 1 種商品 - 共0元
當(dāng)前位置: 首頁(yè) > ATCC代理 > R1/E
最近瀏覽歷史
更多產(chǎn)品
聯(lián)系我們
  • 0574-87157013
  • mingzhoubio@163.com
  • 浙江省寧波市鎮(zhèn)海區(qū)莊市街道興莊路9號(hào)
  • 創(chuàng)e慧谷42號(hào)樓B幢401室
R1/E
R1/E
規(guī)格:
貨期:
編號(hào):B167205
品牌:Mingzhoubio

標(biāo)準(zhǔn)菌株
定量菌液
DNA
RNA

規(guī)格:
凍干粉
斜面
甘油
平板


產(chǎn)品名稱(chēng) R1/E
商品貨號(hào) B167205
Organism Mus musculus, mouse
Tissue inner cell mass
Cell Type embryonic stem cell
Product Format frozen
Morphology Spherical colony
Culture Properties adherent
Biosafety Level 1

Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.

Age embryo
Gender male
Strain 129X1 x 129S1
Storage Conditions liquid niitrogen vapor phase
Derivation
The R1/E cell line was subcloned from R1 in EMBL, Heidelberg, Germany by Kristina Vintersten. The R1 cell line was established in August 1991, from a 129X1 x 129S1 3.5 day blastocyst.  
Clinical Data
male
Comments

The R1/E cell line was subcloned from R1 in EMBL, Heidelberg, Germany by Kristina Vintersten. The R1 cell line was established in August 1991, from a 129X1 x 129S1 3.5 day blastocyst. The cells are heterozygous for the c locus (+/c (ch)) and for the pink eye locus (+/p). 

This mouse ES cell line has been shown to be germline competent.In the F1 generation the coat color is uniform agouti, while in the F2 these two coat color genes segregate. The segregation could result in several coat types, from albino, through light brown, to black, depending on the genetic background of the partner of the germline chimaera.

Pluripotency of R1 was initially tested by tetraploid embryo <-> ES aggregates for completely ES derived development [PubMed: 8378314]. They were also tested by diploid embryo <-> ES aggregates and blastocyst injection for germline transmission in chimeras [PubMed: 8361547]. At early passages (up to passage #14), one third of the completely R1-derived newborns generated by tetraploid embryo <-> R1 aggregates survived. No live offspring were produced from cells older than passage #14. 

However, about 20% of subclones derived from passage #14 had the original developmental potential of R1 when tested by tetraploid aggregates [PubMed: 8378314]. R1-derived animals reached adulthood and were fertile. The genetically altered lines derived from R1 gave high efficiency of germline transmission either by injecting them into C57 blastocyst or aggregating them with CD-1 or ICR outbred 8-cell stage embryos. More than 90% of the individual K.O. clones went to germline (n>60) by aggregation chimeras.

Complete Growth Medium Grow ES cells in Mouse ES Cell Basal Medium (ATCC SCRR-2011) that has been supplemented with the following components:
1. 0.1 mM 2-mercaptoethanol (Life Technologies Cat. No. 21985-023)
2. 1,000 U/mL mouse leukemia inhibitory factor (LIF) (Millipore Cat. No. ESG1107)
3. 10% to 15% ES-Cell Qualified FBS (ATCC® SCRR-30-2020) or an ES cell qualified serum replacement
Complete Growth Medium for Mouse ES Cells is stable for 14 days when stored at 2°C to 8°C.
Subculturing Subculturing Procedure

Note: To insure the highest level of viability, pre-warm media and Trypsin/EDTA to 37ºC before adding to cells. Volumes used in this protocol are for T75 flasks. Proportionally adjust the volumes for culture vessels of other sizes. A split ratio of 1:4 to 1:7 is recommended.

Feeder Cell Preparation for Subcultures

  1. Daily maintain a sufficient number of flasks that have been pre-plated with MEFs in complete medium for feeder cells.
  2. One hour before subculturing the ES cells, perform a 100% medium change for the MEFs using complete growth medium for ES cells.

Dissociation and Transfer of ES Cells

  1. Aspirate the medium from the flask(s) containing ES cells.
  2. Wash with PBS Ca+2/Mg+2-free (ATCC® SCRR-2201).
  3. Add 3.0 mL of 0.25% (w/v) Trypsin / 0.53 mM EDTA solution (ATCC® 30-2101) and place in incubator. After about one minute the ES colonies will dissociate and all cells will detach from the flask.
  4. Dislodge the cells by gently tapping the side of the flask then wash the cells off with 7-10 mL of fresh culture medium. Triturate cells several times with a 10 mL pipette in order to dissociate the cells into a single-cell suspension.
  5. Spin the cells at 270 x g for 5 min. Aspirate the supernatant.
  6. Resuspend in enough complete growth medium for ES cells to reseed new vessels at the desired split ratio (i.e. a split ratio of 1:4 to 1:7 is recommended). Perform a cell count to determine the total number of cells. ES cells should be plated at a density of 30,000 – 50,000 cells/ cm2.
  7. Add separate aliquots of the cell suspension to the appropriate size flask containing feeder cells and add an appropriate volume of fresh complete growth medium for ES cells to each vessel.
  8. Incubate the culture at 37°C in a humidified 5% CO2/95% air incubator. Perform a 100% medium change every day, passage cells every 1-2 days.
Cryopreservation
Freeze medium: Complete growth medium supplemented with an additional 10% FBS and 10% DMSO (ATCC 4-X).
Storage temperature: liquid niitrogen vapor phase
Culture Conditions
Atmosphere: air, 95%; carbon dioxide (CO2), 5%
Temperature: 37°C
Name of Depositor A Nagy
Passage History
Pluripotency of R1 was initially tested by tetraploid embryo <-> ES aggregates for completely ES derived development [PubMed: 8378314]. They were also tested by diploid embryo <-> ES aggregates and blastocyst injection for germline transmission in chimeras [PubMed: 8361547]. At early passages (up to passage #14), one third of the completely R1-derived newborns generated by tetraploid embryo <-> R1 aggregates survived. No live offspring were produced from cells older than passage #14. However, about 20% of subclones derived from passage #14 had the original developmental potential of R1 when tested by tetraploid aggregates [PubMed: 8378314]. R1-derived animals reached adulthood and were fertile. The genetically altered lines derived from R1 gave high efficiency of germline transmission either by injecting them into C57 blastocyst or aggregating them with CD-1 or ICR outbred 8-cell stage embryos. More than 90% of the individual K.O. clones went to germline (n>60) by aggregation chimeras.
Year of Origin 1991
References

Matise M, et alProduction of targeted embryonic stem cell clonesIn: Matise M, et alGene Targeting: A Practical ApproachOxfordOxford University Press101-132, 1999

Nagy A, et al. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA : 8424-8428, 1993. PubMed: 8378314

Wood SA, et al. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365: 87-89, 1993. PubMed: 8361547

Nagy A, Rossant JProduction and analysis of ES-cell aggregation chimerasIn: Nagy A, Rossant JGene Targeting: A Practical ApproachOxfordOxford University Press177-206, 1999

梅經(jīng)理 17280875617 1438578920
胡經(jīng)理 13345964880 2438244627
周經(jīng)理 17757487661 1296385441
于經(jīng)理 18067160830 2088210172
沈經(jīng)理 19548299266 2662369050
李經(jīng)理 13626845108 972239479
平果县| 敦煌市| 柞水县| 昔阳县| 新兴县| 宜兰市| 利川市| 宁陵县| 阜城县| 西宁市| 巴东县| 乌什县| 新乡县| 宣汉县| 施甸县| 吐鲁番市| 富裕县| 宣城市| 米易县| 博客| 襄樊市| 新绛县| 广灵县| 德州市| 建瓯市| 会宁县| 泌阳县| 隆子县| 拉萨市| 天祝| 遂川县| 霍城县| 泰和县| 乐东| 广汉市| 虎林市| 高要市| 绥芬河市| 新巴尔虎左旗| 廊坊市| 和政县|